Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemosphere ; 316: 137718, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592841

RESUMO

Polyvinyl chloride (PVC) plastic wastes can bring a series of problems during pyrolysis or incineration such as the emission of dioxins, corrosion, slagging in the reactors, etc. Hydrothermal treatment of PVC plastics has been intensively studied as it can efficiently remove chlorine from PVC plastics under relatively mild reaction conditions (220-300 °C) to provide value-added products. Meanwhile, the research progress, knowledge gaps, and challenges in this field have not been well addressed yet. This paper gives a comprehensive review of hydrothermal dechlorination of PVC plastics regarding reactors, process variables and fundamentals, possible applications, and challenges. The main pathways of hydrothermal dechlorination of PVC plastics are elimination and -OH nucleophilic substitution. Catalytic hydrothermal and co-hydrothermal optimize the chemical reactions and transportation, boosting the dechlorination of PVC plastics. Hydrochar derived from PVC plastics, on the one hand, is coalified close to sub-bituminous and bituminous coal and can be used as low-chlorine solid fuel. On the other hand, it is also a porous material with aromatic structure and oxygen-containing functional groups, with good potential as adsorbent or energy storage materials. Further studies are expected to focus on waste liquid treatment, revealing the energy and economic balance, reducing the dechlorination temperature and pressure, expanding the application of products, etc. for promoting the implementation of the hydrothermal treatment of PVC plastic wastes.


Assuntos
Cloro , Dioxinas , Cloro/química , Cloreto de Polivinila/química , Temperatura , Incineração , Cloretos , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...